[Contribution from the School of Chemistry, University of Minnesota]

The Activity of Each Component in Aqueous Solutions of Sulfuric Acid and Acetic Acid ${ }^{1}$

By F. H. MacDougall and Donald R. Blumer
Introduction

The theory of Debye has become a highly useful guide in the study of the thermodynamic properties of solutions of electrolytes; it not only relates the activity of the electrolytes to the ionic strength of the solution but also makes predictions as to the activity of the non-electrolytes that are present. An aqueous solution of sulfuric acid and acetic acid contains one strong electrolyte; the other two components may be considered to exist almost entirely in un-ionized forms. The experimental work to be described in this paper led to a determination of the activity of each component of the system. It seemed worth while to test the applicability of the theory of Debye to this ternary system. The first part of the work consisted of electromotive force measurements which gave the activity of the sulfuric acid; the second part was devoted to vapor pressure measurements from which the activities of the water and the acetic acid could be calculated.

Experimental Work, Part I

Electromotive Force Measurements.-E. m. f. measurements were made on cells of the type

$$
\mathrm{H}_{2}\left|\mathrm{H}_{2} \mathrm{SO}_{4}\left(C_{1}\right), \mathrm{HA}\left(C_{2}\right)\right| \mathrm{Hg}_{2} \mathrm{SO}_{4} \mid \mathrm{Hg}
$$

where HA stands for acetic acid. The various solutions used in these cells were made by dilution with redistilled water of standard solutions of sulfuric acid and of acetic acid. The standard sulfuric acid solutions were analyzed gravimetrically, the acetic acid solutions were analyzed by weight titration with barium hydroxide which had been standardized against a solution of hydrochloric acid. The strength of the hydrochloric acid solution was determined gravimetrically. The densities at 25° of all solutions used in making up the cells were determined by means of specific gravity bottles. The hydrogen used in these experiments came from tanks and was purified by being passed through concentrated silver nitrate, concentrated potassium permanganate in sulfuric acid, a solution of pyrogallol in concentrated potassium hydroxide and finally distilled water.

The hydrogen electrode apparatus was essentially the same as that described by Lewis, Brighton and Sebastian, ${ }^{2}$ except that instead of one
(1) This paper gives the essential portions of the thesis presented by D. R. Blumer to the Graduate Faculty of the University of Minnesota in partial fulfilment of the requirements for the degree of Doctor of Philosophy.
(2) Lewis, Brighton and Sebastian, This Journal, 39, 2249 (1917).
tube leading to the mercury electrode, there were three tubes, each with a stopcock, so that any one of three mercury electrodes could be put into the circuit with a given hydrogen electrode. The mercurous sulfate used in these experiments was prepared electrolytically. ${ }^{3}$ Two S-shaped sheets of platinum each about 2 cm . by 2.5 cm . were welded by means of a platinum weld to heavy platinum leads which were sealed into soft glass stoppers having ground-glass joints so that the two electrodes could be used interchangeably in the gas chamber of the apparatus. These electrodes were platinized according to the method recommended by Harned. ${ }^{4}$

After the system had apparently come to equilibrium, five to ten readings of the e. m. f. were made over a period of an hour with a given hydrogen electrode and a given mercury electrode and the average of these values was calculated. Then similar readings were made with each of the other mercury electrodes. Finally the second hydrogen electrode was in-

Table I
C_{1}, C_{2} denote moles per liter of solution; E is the e. m. f. in volts

Soin.	$C_{1}\left(\mathbf{H}_{2} \mathrm{SO}_{4}\right)$	$C_{2}(\mathrm{HA})$	Density	E	Soin.	$C_{1}\left(\mathbf{H}_{2} \mathrm{SO}_{4}\right)$	$C_{2}(\mathrm{HA})$	Density	E
1	0.0502	0.0991	1.0022	0.7540	30	0.2738	1.369	1.0252	0.7061
2	.0480	.9454	1.0102	.7515	31	.5458	1.365	1.0418	.6873
3	.0457	1.801	1.0167	.7489	32	1.091	1.366	1.0747	.6653
4	.0417	3.299	1.0268	.7444	33	1.637	1.364	1.1069	.6492
5	.0383	4.538	1.0330	.7404	34	2.177	1.361	1.1385	.6353
6	.0504	0.0	1.0019	.7544	35	0.0546	2.184	1.0178	.7430
7	.1369	.0	1.0060	.7290	36	.1087	2.186	1.0213	.7260
8	.2741	.0	1.0147	.7115	37	.2731	2.184	1.0319	.7027
9	.5472	.0	1.0315	.6929	38	.5478	2.186	1.0483	.6838
10	1.093	.0	1.0648	.6712	39	1.093	2.186	1.0804	.6616
11	1.642	.0	1.0977	.6555	40	1.640	2.186	1.1126	.6449
12	2.184	.0	1.1296	.6418	41	2.184	2.187	1.1440	.6308
13	0.0545	.0991	1.0016	.7517	42	0.0543	3.280	1.0258	.7379
14	.1004	.0991	1.0042	.7367	43	.1089	3.284	1.0293	.7209
15	.1473	.0991	1.0075	.7268	44	.2732	3.279	1.0392	.6979
16	.2008	.0991	1.0105	.7193	45	.5471	3.278	1.0556	.6789
17	.4016	.0991	1.0230	.7012	46	1.091	3.276	1.0875	.6567
18	.8197	.0991	1.0489	.6802	47	1.639	3.278	1.1194	.6398
19	1.642	.0991	1.0983	.6550	48	2.181	3.270	1.1503	.6248
20	3.278	.0991	1.1927	.6153	49	0.0545	4.388	1.0333	.7325
21	0.0547	.5491	1.0052	.7496	50	.1086	4.368	1.0364	.7156
22	.1366	.5487	1.0100	.7269	51	.2729	4.364	1.0466	.6928
23	.2733	.5485	1.0190	.7095	52	.5482	4.382	1.0627	.6734
24	.5453	.5483	1.0356	.6908	53	1.093	4.383	1.0945	.6505
25	1.092	.5475	1.0688	.6690	54	1.643	4.386	1.1261	.6334
26	1.637	.5474	1.1013	.6531	55	2.185	4.369	1.1569	.6181
27	2.179	.5470	1.1331	.6392	56	0.0	1.087	1.0059	
28	0.0546	1.367	1.0116	.7463	57	.0	2.175	1.0145	
29	.1364	1.368	1.0169	.7237					

[^0]serted in place of the first one and the whole set of readings repeated. The final average only of these readings, corrected to a hydrogen pressure of one atmosphere, is given in the tables. As an illustration of the accuracy and reliability of the measurements, we may give here the results with 0.0506 molal sulfuric acid as the cell solution. The values run: $0.75429,0.75440,0.75440 ; 0.75449,0.75447,0.75450 ; 0.75445,0.75443$; the average is 0.75443 . For the same cell, Randall and Cushman ${ }^{5}$ obtained $0.7544,0.7545,0.7543$; average, 0.7544 .

In Table I are given density, concentration and e. m. f. data for 55 different solutions. Solutions 56 and 57 were used in vapor pressure measurements.

Discussion of Electromotive Force Measurements

The e. m . f. of our cells (for $P_{\mathrm{H}_{2}}, 1 \mathrm{~atm}$.) is given by the expression

$$
E=E_{0}-\frac{R T}{2 F} \log _{e}\left(a_{\mathrm{E}}^{2+} a_{\mathrm{SO}_{4}-}\right)
$$

If m_{1} and C_{1} are the molality and molarity, respectively, of sulfuric acid and if x_{1} is the "normalized" mole fraction of $\mathrm{SO}_{4}=$ (i.e., 55.51 times the actual mole fraction) calculated on the assumption that the sulfuric acid is completely ionized and that the acetic acid is completely un-ionized and unassociated, and if γ, γ_{c} and f are the mean activity coefficients of the sulfuric acid defined as usual with respect to molalities, molarities and mole fractions, respectively, then we may write

$$
\begin{align*}
E & =E_{0}-\frac{3 R T}{2 F} \log _{\mathrm{e}} 4^{1 / 3 m} \gamma \tag{1}\\
& =E_{0}^{\prime}-\frac{3 R T}{2 F} \log _{\mathrm{e}} 4^{1 / 3} C_{1} \gamma_{\circlearrowleft} \\
& =E_{0}^{\prime \prime}-\frac{3 R T}{2 F} \log _{\mathrm{e}} 4^{\prime} / 3 x_{1} f
\end{align*}
$$

We have also

$$
\begin{align*}
& E_{0}^{\prime}=E_{0}+\frac{3 R T}{2 F} \log _{0} \rho_{0} \tag{2}\\
& E_{0}^{\prime \prime}=E_{0}
\end{align*}
$$

where ρ_{0} is the density of pure water. If M_{1} and M_{2} be the formula weights of sulfuric acid and acetic acid, respectively, then

$$
\begin{gather*}
\log \gamma=\log f-\log \left[1+\frac{3 m_{1}+m_{2}}{55.51}\right] \tag{3}\\
\log \gamma_{c}=\log f+\log \left[\frac{\rho_{0}\left(1+\frac{m_{1} M_{1}+m_{2} M_{2}}{1000}\right)}{\rho\left(1+\frac{3 m_{1}+m_{2}}{55.51}\right)}\right]
\end{gather*}
$$

The calculation of the activity coefficient of sulfuric acid by means of equation (1) presupposes a knowledge of E_{0}. A conceivable method of determining E_{0} would consist in measuring E for an exceedingly dilute

[^1]solution of sulfuric acid for which we could make a fairly accurate estimate of the activity coefficient. This procedure, however, is not experimentally practicable. There remains the possibility that the e. m. f. of the solutions may be represented by means of an equation of the Debye and Hückel type, an equation partly theoretical and partly empirical. Applied to an aqueous solution of sulfuric and acetic acids, the equation of Debye and Hückel for a temperature of 25° may be written
\[

$$
\begin{gather*}
\log _{10} f=\frac{-1.7476 C_{1}^{1 / 2}}{1+A C_{1}^{1 / 2}}+\lambda_{1} C_{1}+\lambda_{2} C_{2} \tag{4}\\
\log _{10} \gamma=\frac{-1.7476 C_{1}^{1 / 2}}{1+A C_{1}^{1 / 2}}-\log _{10}\left[1+\frac{3 m_{1}+m_{2}}{55.51}\right]+\lambda_{1} C_{1}+\lambda_{2} C_{2}
\end{gather*}
$$
\]

In these equations, λ_{1} and λ_{2} may be looked on as purely empirical constants.

In terms of the theory of Debye, the constant A is equal to $0.5686 \times$ $10^{8} a$, where a is an average ionic diameter. On substituting the value of γ given by (4') in equation (1), we obtain

$$
\begin{align*}
& \frac{E_{0}-E}{0.088695}=0.20069+\log _{10} m_{1}-\frac{1.7476 C_{1}^{1 / 2}}{1+A C_{1}^{1 / 2}}-\log _{10} \\
& \quad\left[1+\frac{3 m_{1}+m_{2}}{55.51}\right]+\lambda_{1} C_{1}+\lambda_{2} C_{2} \tag{5}
\end{align*}
$$

This equation was fitted to the e. m. f. results for solutions (6), (8) and (10) which contain no acetic acid. We find: $E_{0}=0.6290, A=0.8565$; $\lambda_{1}=0.2346$. This value of A corresponds to an ionic diameter $a=1.506 \times$ $10^{-8} \mathrm{~cm}$. Using these values of E_{0}, A and λ_{1}, the calculated values of the e. m. f. for solutions (7), (9) and (11) are $0.7285,0.6935$ and 0.6536 corresponding, respectively, to the observed values $0.7290,0.6929$ and 0.6555 .

Equation (5) was tested further by calculating values of λ_{2}, using the e. m. f. data for all the solutions which contained acetic acid and employing the values of E_{0}, A and λ_{1} derived from solutions containing sulfuric acid only. The variations in the calculated values of λ_{2} were naturally greatest for solutions in which the concentration of acetic acid was low. For solutions in which the concentration of acetic acid was greater than 1 molar, the average value of λ_{2} for the various concentrations ranged from 0.0312 to 0.0372 with a grand average of $\lambda_{2}=0.0339$ and an average deviation of 5% from the grand average.

It was found that the e. m. f.'s of all solutions in which the concentration of sulfuric acid was not greater than 1.09 could be calculated with a considerable degree of accuracy by means of equation (5), taking $\lambda_{2}=0.0339$ and using the values of E_{0}, A and λ_{1} previously mentioned. The average deviation of the calculated from the observed e. m. f. for twenty-four solutions was ± 0.0004 volt. The maximum deviation was 0.0012 volt.

Activity Coefficient of Sulfuric Acid.-The significance of the fact that equation (5) with definite values of the constants E_{0}, A, λ_{1} and λ_{2} repre-
sents with some degree of accuracy the observed e. m. f. over a considerable range of concentration should not be overestimated. If we represent the E_{0} and γ of equation (1) by E_{0}^{*} and γ^{*}, and retain the symbols E_{0} and γ for the quantities defined in equations (5) and (4), then the only indisputable conclusion is that

$$
\begin{equation*}
\log _{10} \gamma^{*}=\log _{10} \gamma+\frac{E_{0}^{*}-E_{0}}{0.088695}=\log _{10} \gamma+\frac{E_{0}^{*}-0.6290}{0.088695} \tag{6}
\end{equation*}
$$

for the validity of equation (5) over a limited range of concentration does not necessitate the identity of E_{0} and E_{0}^{*}. It follows from equation (6) that if E_{0} is not equal to E_{0}^{*}, then the values of γ calculated by means of equation (4') must be multiplied by a constant factor to give the true values which are symbolized by γ^{*}. If, however, we assume that equation (5) is valid also for solutions of low ionic strength, to which the theory of Debye is generally admitted to be applicable, then γ becomes identical with γ^{*} and equation (4') gives the true values of the activity coefficient of sulfuric acid for all solutions in which the concentration of

Table II
Observed Activity Coefficients of Sulfuric Acid Basis: for solution (6), $f=0.4817 ; \gamma_{c}=0.4809 ; \gamma=0.4804$

Solution	f	γ_{c}	γ	Solution	f	γ_{c}	
5	0.767	0.910	0.691	9	0.221	0.219	0.214
4	.669	.754	.623	24	.230	.232	.221
3	.575	.612	.554	31	.246	.253	.230
2	.529	.544	.518	38	.259	.277	.240
1	.488	.488	.485	45	.282	.315	.254
6	.482	.481	.480	52	.310	.362	.271
13	.476	.477	.474	18	.205	.203	.196
21	.493	.501	.486	10	.196	.192	.185
28	.523	.548	.508	25	.204	.204	.190
35	.553	.597	.528	32	.218	.224	.199
42	.608	.685	.565	39	.233	.247	.208
49	.666	.785	.602	46	.254	.281	.221
14	.382	.382	.379	53	.285	.329	.239
36	.432	.466	.411	11	.198	.192	.181
43	.472	.531	.437	19	.200	.195	.182
50	.520	.611	.468	26	.207	.205	.187
7	.343	.342	.341	33	.223	.227	.197
15	.337	.337	.334	40	.241	.254	.209
22	.357	.362	.350	47	.264	.290	.221
29	.377	.394	.364	54	.297	.341	.240
16	.300	.300	.297	12	.214	.206	.190
8	.271	.269	.267	27	.225	.221	.197
23	.281	.284	.274	34	.242	.245	.207
30	.297	.310	.285	41	.263	.275	.220
37	.316	.340	.298	48	.292	.321	.238
44	.343	.385	.315	55	.336	.382	.260
51	.375	.441	.334	20	.287	.274	.238
17	.241	.240	.235				

sulfuric acid is not much greater than 1 molar. It does not seem to be worth while to include in this paper the values of γ resulting from the application of equation (4) to all the solutions we have investigated. Since solutions (6), (8) and (10) have been used in this research as our standard reference solutions, it would seem to be a more useful procedure to calculate the activity coefficient for any one of these by means of equation $\left(4^{\prime}\right)$ and then, on the basis of this value, to calculate the activity coefficients of all other solutions from the observed electromotive force. Applying equations (4^{\prime}), (3) and (3^{\prime}) to solution (6), we find for the activity coefficients

$$
\begin{equation*}
f=0.4817 ; \quad \gamma_{\mathrm{c}}=0.4809 ; \quad \gamma=0.4804 \tag{7}
\end{equation*}
$$

In Table II will be found the mean activity coefficients of sulfuric acid in all the solutions investigated, calculated on the basis of (7) and the observed e. m. f.'s. These will be called "observed" activity coefficients.

From Table II it follows that for aqueous solutions of sulfuric acid the activity coefficient f has a minimum value of 0.194 for $C_{1}=1.30$ or $m_{1}=$ 1.37 ; that γ_{c} has a minimum of 0.189 for $C_{1}=1.35$ or $m_{1}=1.43$; and that the minimum value of γ is 0.180 for $C_{1}=1.48$ or $m_{1}=1.57$.

Part II. Vapor Pressure Measurements

The dynamic method employed in determining the vapor pressures of the solutions was somewhat similar to that of Washburn and Heuse. ${ }^{6}$ However, a number of changes were made in the design of the apparatus. An extra alkali absorption bulb was added to collect the acetic acid vapor. Moreover, the air was bubbled through the liquids instead of over their surfaces. The saturators and absorbers were equipped with bubblers of the "petticoat" type. The exit tubes were wound with nichrome wire and maintained at a temperature of 30 to 35° to prevent condensation of vapor. The solution of barium hydroxide in the alkali absorbers was analyzed by weight titration with standardized hydrochloric acid.

To calculate the partial vapor pressure of the acetic acid from the results of our experiments, we need to know the average molecular weight of acetic acid vapor under the conditions of the experiment. This information we derived from a study of the vapor density data obtained by Ramsay and Young. ${ }^{7}$

Vapor Density of Acetic Acid.-If we assume that the vapor of acetic acid contains the two molecular species $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$, we can readily calculate from the density determinations of Ramsay and Young the value of the equilibrium constant K_{p}, where

$$
\begin{equation*}
K_{\mathrm{p}}=p_{\mathrm{HA}}^{2} / p_{\mathrm{H} 2 \mathrm{~A} 2} \tag{8}
\end{equation*}
$$

Using the average values of K_{p} so obtained for each temperature, we have plotted in Fig. 1 the values of $-\log K_{\mathrm{p}}$ against $1 / T$. It should be emphasized that the individual values of K_{p} at any one temperature show
(6) Washburn and Heuse, This Journal, 37, 309 (1915).
(7) Ramsay and Young, J. Chem. Soc., 49, 790 (1886).
considerable deviations from the mean, amounting occasionally to 50%. The best straight line through the points of Fig. 1 leads to a value of $K_{p}=$ 0.325 mm . at 25°. The possible error in this value is difficult to estimate but it may amount to 10 or 20%. Incidentally, from the slope of the line we find that the heat absorbed in the dissociation of one mole of $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ is approximately 18,600 calories.

Calculation of Vapor Pressures from Experimental Data
$B \quad=$ average atmospheric pressure in mm. during a run
$M_{1}=60.03=$ molecular weight of unassociated acetic acid
$M_{\mathrm{H} 2 \mathrm{O}}=18.016=$ molecular weight of water vapor
$M_{\mathbf{x}}=$ average molecular weight of vapor of acetic acid
$P_{0}=$ vapor pressure of pure water, 23.773 mm .
$P_{1}=$ partial water vapor pressure of solution
$P_{\mathbf{x}}=$ partial acetic acid vapor pressure of solution
$\Delta P_{1}, \Delta P_{2}=$ readings on the solution and water saturator manometers, respectively
$W_{0}=$ mass of water vapor carried over from pure water
$W_{1}=$ mass of water vapor carried over from solution
$W_{\mathbf{x}}=$ mass of acetic acid vapor carried over from solution
$V_{1}, V_{2}=$ volumes of gas leaving the solution and water saturators, respectively, during a run.

Among $P_{\mathrm{x}}, M_{\mathrm{x}}, P_{\mathrm{HA}}$ and $P_{\mathrm{H}_{2} \mathrm{~A}_{2}}$ the following relations exist

$$
\begin{gather*}
M_{\mathrm{x}}=M_{1}\left[\frac{4 P_{\mathrm{x}}+K_{\mathrm{p}}-\sqrt{K_{\mathrm{p}}^{2}+4 K_{\mathrm{p}} P_{\mathrm{x}}}}{2 P_{\mathrm{x}}}\right] \tag{9}\\
P_{\mathrm{x}}=\frac{M_{1}\left(M_{\mathrm{x}}-M_{1}\right)}{\left(2 M_{1}-M_{\mathrm{x}}\right)^{2}} K_{\mathrm{p}} \\
P_{\mathrm{HA}}=\frac{\left(2 M_{1}-M_{\mathrm{x}}\right)}{M_{1}} P_{\mathrm{x}} \\
P_{\mathrm{H} 2 A 2}=\frac{M_{\mathrm{x}}-M_{1}}{M_{1}} P_{\mathrm{x}}
\end{gather*}
$$

Assuming the validity of the ideal gas laws, we have

$$
\begin{equation*}
\frac{B-\Delta P_{1}-p_{1}-p_{x}}{B-\Delta P_{2}-p_{0}}=\frac{V_{2}}{V_{1}}=\frac{p_{1} W_{0}}{p_{0} W_{1}} \tag{10}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
x=\frac{p_{\mathrm{x}}}{p_{1}}=\frac{W_{\mathrm{x}} M_{\mathrm{H}, 0}}{W_{1} M_{\mathrm{x}}} \tag{11}
\end{equation*}
$$

From equations (10) and (11) we obtain

$$
\begin{equation*}
p_{1}=\frac{W_{1} p_{0}\left(B-\Delta P_{1}\right)}{W_{0}\left(B-\Delta P_{2}-p_{0}\right)+W_{1} p_{0}(1+x)} \tag{12}
\end{equation*}
$$

Equations (11) and (12) are solved for p_{1} and p_{z} by repeated trials. Assuming an approximate value of M_{x}, we get from (11) an approximate value of x. Substituting this value of x in (12) gives a first approximation to p_{1}. From these values of p_{1} and x, we get from the equation, $p_{x}=X p_{1}$, a value of p_{x} which leads by means of equation (9) to a more accurate value of $M_{\mathbf{x}}$. Repetition of this procedure finally gives values of p_{1} and p_{x} which are consistent with equations (9), (11) and (12). Equations
($9^{\prime \prime}$) and ($9^{\prime \prime \prime}$) then give the partial vapor pressures of the associated and unassociated acetic acid vapor,

Anl estimate of the accuracy of the experiments may be made from a consideration of the following results. Nine runs with one apparatus were made using pure water instead of a solution. The values of the vapor pressure of water so determined ranged from 23.73 to 23.83 mm . with an average value of 23.79. A second series of seven runs with a different apparatus gave values ranging from 23.70 to 23.78 with an average value of 23.73 mm . For solution (24) in which the concentrations of sulfuric acid and acetic acid were $C_{3}=$ 0.5463 and $C_{2}=0.5483$, respectively, the values found for $p_{\mathrm{H}_{2} \mathrm{O}}$ were 22.93, 23.05, 23.02 and 22.92; and for p_{x}, $0.129,0.117,0.120,0.120$. For solution (50), with $C_{1}=0.1086$ and $C_{2}=4.368$, the values found for $p_{\mathrm{H}_{2} \mathrm{O}}$ were 21.76, $21.71,21.74$ and 21.70 ; and for $p_{\mathrm{x}}, 1.050,1.046,1.041$ and 1.046 . These results may, we

Fig. 1.-Reaction in gas phase: $\mathrm{H}_{3} \mathrm{~A}_{2} \rightleftarrows 2 \mathrm{HA}$. think, be taken as representative. In Table III, we give the average values of $p_{\mathrm{H}_{2} \mathrm{O}}, p_{\mathrm{x}}$ (vapor pressure due to both species of acetic acid), p_{HA} and $p_{\mathrm{H}_{2} \mathrm{~A}_{2}}$, together with $p_{\text {total }}$, the total vapor pressure of the liquid investigated.

Thermodynamic Calculation of the Partial Vapor Pressure of Acetic Acid.-For the thermodynamic treatment we have in mind, it is necessary to know the activity coefficient of the sulfuric acid, the partial water vapor pressure and the partial acetic acid vapor pressure, P_{HA}, for a series of solutions of constant molality in sulfuric acid and varying molality in acetic acid as well as for a series of solutions of constant molality in acetic acid and varying molality in sulfuric acid. This information was obtained graphically from a series of plots and is assembled in Table IV.

Representing by a_{0}, a_{1} and a_{2} the activity of water, sulfuric acid and acetic acid in a given solution in which the molalities of the acids are m_{1} and m_{2}, respectively, we have the following thermodynamic relation, valid for any changes in composition at constant temperature and pressure, viz.

$$
\begin{equation*}
55.51 d \log a_{0}+m_{1} d \log a_{1}+m_{2} d \log a_{2}=0 \tag{13}
\end{equation*}
$$

Table III

Vapor Pressures of Solutions

For Concentration Data, see Table I

No. of solution	No. of runs averaged	$p_{\text {H20 }}$	p_{x}	$p_{\text {HA }}$	$p_{\text {H2A } 2}$	$p_{\text {total }}$
Pure water	9	23.79				23.79
Pure water	7	23.73				23.73
2	4	23.23	0.179	0.128	0.051	23.41
3	4	22.90	. 366	. 219	. 147	23.27
4	4	22.30	. 731	. 351	. 380	23.03
5	4	21.80	1.075	. 449	. 626	22.88
6	5	23.67				23.67
7	4	23.55				23.55
8	3	23.47				23.47
9	3	23.18				23.18
10	4	22.64				22.64
11	2	21.94				21.94
12	5	20.91				20.91
21	4	23.41	0.109	0.086	0.023	23.52
22	3	23.29	. 108	. 085	. 023	23.40
23	4	23.15	. 118	. 092	. 026	23.27
24	4	22.98	. 122	. 095	. 027	23.10
25	4	22.31	. 134	. 102	. 032	22.44
26	4	21.56	. 149	. 111	. 038	21.71
27	4	20.67	. 164	. 120	. 044	20.83
28	4	22.97	. 278	. 179	. 099	23.25
29	4	22.83	. 294	. 187	. 107	23.12
30	4	22.67	. 304	. 191	. 113	22.98
31	2	21.84	. 354	. 213	. 141	22.20
33	2	20.90	. 443	. 251	. 192	21.34
34	2	19.80	. 497	. 271	. 226	20.30
35	8	22.60	. 456	. 255	. 201	23.06
36	4	22.65	. 460	. 256	. 204	23.11
37	4	22.44	. 479	. 264	. 215	22.92
38	4	22.11	. 523	. 280	243	22.63
39	4	21.33	. 611	. 311	. 300	21.94
41	4	19.38	. 824	. 379	. 445	20.21
42	3	22.30	. 708	. 344	. 364	23.01
43	4	22.27	. 733	. 351	. 302	23.00
44	3	21.96	. 781	. 366	. 415	22.74
45	5	21.58	. 850	. 386	. 464	22.43
46	4	20.80	. 999	. 429	. 570	21.80
47	4	19.72	1.180	. 477	. 703	20.90
48	4	18.58	1.374	. 524	. 850	19.95
49	4	21.82	1.041	. 441	. 600	22.86
50	4	21.73	1.046	. 442	. 604	22.77
51	4	21.54	1.105	. 457	. 648	22.65
52	4	21.09	1.217	. 486	731	22.30
53	4	20.23	1.371	. 523	848	21.60
54	4	18.92	1.714	600	1.114	20.63
56	4	23.25	0.195	. 137	0.058	23.45
57	4	22.85	. 430	. 245	. 185	23.28

Since the partial vapor pressures, $P_{\mathrm{H}_{2} \mathrm{O}}$ and P_{HA} are proportional to a_{1} and a_{2}, respectively, and since the activity a_{1} of sulfuric acid is proportional to $\left(m_{1} \gamma\right)^{3}$, where γ is the mean activity coefficient of sulfuric acid, we may rewrite equation (13) in the form

$$
\begin{equation*}
d \log P_{\mathrm{HA}}=-\frac{55.51}{m_{2}} d \log P_{\mathrm{H} 2 \mathrm{O}}-\frac{3 m_{1}}{m_{2}} d \log \left(m_{1} \gamma\right) \tag{14}
\end{equation*}
$$

Representing any two solutions by the symbols 1 and 2 , we have for the case in which the two solutions have the same molality of acetic acid, m_{2}
$\log \left(P_{\mathrm{HA}}\right)_{2}-\log \left(P_{\mathrm{HA}}\right)_{1}=-\frac{55.51}{m_{2}}\left[\log \left(P_{\mathrm{H} 2 \mathrm{O}}\right)_{2}-\log \left(P_{\mathrm{H} 2 \mathrm{O}}\right)_{1}\right]$

$$
\begin{equation*}
-\frac{3}{m_{2}} \int_{1}^{2} m_{1} d \log \left(m_{1} \gamma\right) \tag{15}
\end{equation*}
$$

Similarly for any two solutions of equal molality, m_{1}, in sulfuric acid, integration of (14) gives the expression
$\log \left(P_{\mathrm{HA}}\right)_{2}-\log \left(P_{\mathrm{HA}}\right)_{1}=-55.51 \int_{1}^{2} \frac{1}{m_{2}} d \log P_{\mathrm{H} 2 \mathrm{O}}-3 m_{1} \int_{1}^{2} \frac{1}{m_{2}} d \log \left(m_{1} \gamma\right)$
Careful plots were made, using the data of the first four columns of Table IV for the appropriate series of solutions, of m_{1} and $1 / m_{2}$ as functions of

Table IV
Calculation of $P_{\text {Ha }}$ and Summarized Data on Activity Coefficient of Sulfuric Acid

${ }^{1}$	$\underset{m_{2}}{m_{2}}$ acid	$\begin{gathered} P_{23.773} \\ P_{\mathrm{H}} \end{gathered}$		$P_{\mathrm{HA}}(\mathrm{~mm} .),$	$\begin{aligned} & P_{\text {Ra }} \\ & \text { calced. } \end{aligned}$		$\underset{\substack{m_{2} \\ \text { acetic }}}{ }$ $\begin{aligned} & \text { ace } \\ & \text { aicid } \end{aligned}$	$\begin{gathered} { }_{23}{ }_{23}^{\mathrm{H} O} \mathrm{O} \end{gathered}$	$\underset{\substack{\text { for } \\ \mathrm{H}_{2} \mathrm{SO}_{4}}}{\substack{4 \\ \hline}}$	mm	HA
2.5	6:0	0.7961	0.245	0.595	0.567	2.5	1.5	0.8440	0.206	0.257	0.292
2.0	6.0	. 8216	239	. 567	. 560	2.0	1.5	. 8750	199	. 242	245
1.5	6.0	. 8497	239	. 538	. 527	1.5	1.5	. 9013	. 195	. 230	238
1.0	6.0	. 8740	253	. 507	506	1.0	1.5	. 9243	205	. 217	230
0.5	6.0	. 8973	. 306	. 477	(.477)	0.5	1.5	. 9465	244	. 199	203
. 25	6.0	. 9090	. 389	. 461	. 460	25	1.5	. 9578	305	. 190	. 184
. 10	6.0	. 9158	540	. 453	450	10	1.5	. 9653	414	. 184	169
. 0503	6.0	. 9178	. 691	. 448	447	0506	1.5	. 9683	539	. 179	160
2.5	4.0	. 8111	227	. 471	. 516	2.5	0.5	. 8695	197	. 114	090
2.0	4.0	8423	. 226	445	. 470	2.0	. 5	. 8981	190	. 099	084
1.5	4.0	. 8703	220	422	434	1.5	. 5	. 9236	185	. 089	. 097
1.0	4.0	. 8950	232	. 396	411	1.0	. 5	. 9463	195	. 086	095
0.5	4.0	. 9183	. 278	. 371	. 381	0.5	. 5	9670	232	. 080	. 082
25	4.0	9303	. 351	357	362	25	. 5	9775	277	. 077	076
. 10	4.0	9374	. 484	348	. 350	. 10	. 5	. 9840	. 380	. 076	. 067
. 0506	4.0	9396	. 623	343	. 347	. 0506	. 5	. 9863	493	. 073	063
2.5	2.5	8278	. 214	. 350	. 420	2.5	. 0	. 8826	192		
2.0	2.5	8580	. 207	332	. 379	2.0	. 0	. 9098	185		
1.5	2.5	8860	204	313	. 351	1.5	. 0	. 9358	. 180		
1.0	2.5	9110	. 215	294	. 320	1.0	. 0	9576	. 186		
0.5	2.5	9340	. 256	273	289	0.5	. 0	. 9776	. 221		
25	2.5	9463	. 325	263	265	. 25	0	. 9879	278		
. 10	2.5	9539	. 441	256	251	. 10	. 0	. 9941	379		
0506	2.5	9563	572	252	246	. 0506	. 0	. 9957	480		

$\log \left(m_{1} \gamma\right)$ and of $1 / m_{2}$ as a function of $\log P_{\mathrm{H}_{8} \mathrm{O}}$. The values of the definite integrals occurring in (15) and (16) were determined by graphical integration using a planimeter, It should be noted that equations (15) and (16) do not give the value of P_{HA} for one solution but the ratio of the vapor pressures for two solutions. Equation (15) was applied to each of the groups for which m_{2} is constant, namely, for $m_{2}=6,4,2.5,1.5$ and 0.5 , respectively. This procedure gives the relative values of P_{HA} within each group. A possible method of comparing calculated with observed values of $P_{\text {HA }}$ would consist in selecting arbitrarily some one observed value of $P_{\text {HA }}$ in each group and then calculating by means of the ratios determined for each group by means of equation (15) the values of P_{HA} for the other members of the group. This method has the advantage of improving the chances for agreement between observed and calculated values. We preferred to make only one arbitrary selection of P_{HA}. We selected as our standard the observed value, $P_{\mathrm{HA}}=0.477$, for the solution in which $m_{1}=0.5$ and $m_{2}=6.0$. The passage from the group for which $m_{2}=6.0$ to the groups for which $m_{2}=4.0,2.5,1.5$ and 0.5 was made by applying equation (16) to the series for which m_{1} was constant and equal to 1.5 and for which m_{2} varied from 0.5 to 6.0 . In the sixth column of Table IV are given the values of $P_{\text {HA }}$ calculated by this method. The agreement with the observed values of column five must be admitted to be, in general, excellent.
Activity Coefficients of Unassociated and Associated Acetic Acid in Solution and the Equilibrium between the Two Forms.-The theory of Debye ${ }^{8}$ considers the effect of a change in the dielectric constant of a solution on the activity coefficients of the various solutes. On the assumption that the dielectric constant decreases linearly with the concentration of the dissolved substances as given by the expression

$$
\begin{equation*}
D=D_{0}\left(1-C_{1} \delta_{1}-C_{2} \delta_{2}\right) \tag{17}
\end{equation*}
$$

where C_{1} is the concentration of electrolyte and C_{2} the concentration of non-electrolyte, Debye and McAulay find the equivalent of the following expression for a temperature of 25°

$$
\begin{equation*}
\frac{\log _{10} f}{S}=\frac{0.4343 N \epsilon^{2} \delta_{2}}{D_{0} R T b}=\frac{3.072 \times 10^{-8}}{b} \delta_{2} \tag{18}
\end{equation*}
$$

In equation (18), f is the mole fraction activity coefficient of the nonelectrolyte, S is the ionic strength, N is Avogadro's number and b is an average ionic radius. Equation (18) is derived for solutions of low ionic strength, but an extension of the considerations to more concentrated solutions leads to the conclusion that a fairly constant value of $\log f / S$ even for moderate ionic strengths, is not inconsistent with the theory. Randall and Failey, ${ }^{9}$ in an extended test of equation (18), using, however, the

[^2]molality activity coefficient in place of f, were able to show that in many cases $\log \gamma / S$ was approximately constant. On the basis of our vapor pressure measurements we have been able to determine the activity coefficient of acetic acid as a function of the concentration of sulfuric acid. We have also investigated the equilibrium between unassociated and associated acetic acid in aqueous solution.

In a solution in which the stoichiometric concentrations of sulfuric acid and acetic acid are C_{1} and C_{2}, respectively, let C_{u} and C_{a} be the respective concentrations of unassociated and associated acetic acid. Assurning that the associated acid consists of double molecules, we have

$$
\begin{equation*}
C_{2}=C_{u}+2 C_{\mathrm{a}} \tag{19}
\end{equation*}
$$

For the equilibrium $2 \mathrm{HA} \rightleftarrows \mathrm{H}_{2} \mathrm{~A}_{2}$, we have

$$
\begin{equation*}
K_{\mathrm{o}}=\frac{a_{\mathrm{H} 2 \mathrm{t} 2}}{a_{\mathrm{HA}}^{2}}=\frac{C_{\mathrm{a}} \gamma_{\mathrm{a}}}{C_{\mathrm{u}}^{2} \gamma_{\mathrm{u}}^{2}} \tag{20}
\end{equation*}
$$

where γ_{a} and γ_{u} are molarity activity coefficients. Since $P_{\mathrm{HA}}=k_{1} a_{\mathrm{HA}}=$ $k_{1} C_{\mathrm{u}} \gamma_{\mathrm{u}}$, we find from equations (19) and (20)

$$
\begin{align*}
C_{2} & =\frac{1}{k_{1} \gamma_{\mathrm{u}}} P_{\mathrm{HA}}+\frac{2 K_{0}}{k_{1}^{2} \gamma_{\mathrm{a}}} P_{\mathrm{HA}}^{2} \tag{21}\\
& =B_{1} P_{\mathrm{HA}}+B_{2} P_{\mathrm{HA}}^{2}
\end{align*}
$$

where $B_{1}=1 / k_{1} \gamma_{u}$ and $B_{2}=2 K_{\mathrm{c}} / k_{1}^{2} \gamma_{\mathrm{a}}$. We have also the relation

$$
\begin{equation*}
\frac{B_{2}}{2 B_{1}^{2}}=\frac{K_{\mathrm{c}} \gamma_{\mathrm{u}}^{2}}{\gamma_{\mathrm{a}}}=\frac{C_{\mathrm{s}}}{C_{\mathrm{u}}^{2}} \tag{22}
\end{equation*}
$$

In Table V we have assembled values of P_{HA} for round concentrations of sulfuric acid and of acetic acid. A cursory examination of this table will show that: (a) for a given concentration of acetic acid, the value of P_{HA} increases with the ionic strength; in other words, the activity of the acetic acid in solution increases with the ionic strength; (b) for a given ionic strength, the value of P_{HA} increases with, but not so rapidly as, the concentration of acetic acid; this points to an increasing degree of association of the acetic acid with the concentration.

Table V
Vapor Pressures at Round Concentration

$\underset{\text { acetic acid }}{\mathrm{C}_{2}}$	$\begin{gathered} P_{\text {HA }} \text { for } \\ C_{\text {H2SO4 }}=2.0 \end{gathered}$	$C_{1} \stackrel{P_{\text {BA }}}{=1.5}$	$C_{1} \stackrel{P_{\text {EA }}}{=}$	$c_{1}={ }^{P_{\text {HA }}}=0.5$	$c_{1} \stackrel{P_{\text {HA }}}{=0.25}$	
4.0	0.570	0.524	0.479	0.433	0.411	0.389
3.5	. 510	. 468	. 427	. 384	. 366	. 344
3.0	. 456	. 419	. 380	. 340	. 326	. 306
2.5	. 401	. 369	. 335	295	. 287	. 269
2.0	. 345	. 317	. 289	. 257	246	. 231
1.5	. 284	. 260	. 237	214	203	190
1.0	. 203	. 188	. 174	160	. 150	. 143
0.5	. 106	. 100	. 091	. 085	. 080	. 077

Let us assume that the activity coefficients of the two forms of acetic acid are functions of the ionic strength only and that they are approxi-
mately unity for solutions of low ionic strength. If the values of $P_{\text {HA }}$ given in any one of the vertical columns of Table V be divided by the corresponding values of P_{HA} in the last column ($C_{1}=0.0$), it will be found that for each column an approximately constant ratio is obtained. This is shown in Table VI. It follows from this, as can be readily shown, (a) that $C_{\mathrm{a}} / C_{\mathrm{u}}^{2}$ is constant and equal to K_{c}, independently of the ionic strength; (b) that, therefore, $\gamma_{a}=\gamma_{u}^{2}$; (c) that the value of γ_{u} for a solution of any ionic strength is given by the value of R in the appropriate column of Table VI.

Table VI

Ratio, R, of Vapor Pressure, $P_{\text {ha }}$, of a Solution to that of a Solution of the Same Acetic Acid Concentration but Containing no Sulfuric Acid					
$\stackrel{C_{2}}{\text { acetic acid }}$	$\begin{gathered} R \\ C_{\mathrm{H}_{2} \mathrm{SO}_{4}}=2 \end{gathered}$	$C_{1} \stackrel{R}{=}_{1.5}$	$C_{1} \stackrel{R}{1.0}$	$C_{1} \stackrel{R}{=} 0.5$	$C_{1}{ }^{R}=0.25$
4.0	1.465	1.347	1.231	1.113	1.057
3.5	1.483	1.360	1.241	1.116	1.064
3.0	1.490	1.369	1.242	1.111	1.065
2.5	1.491	1.372	1.245	1.097	1.067
2.0	1.494	1.372	1.251	1.113	1.065
1.5	1.495	1.368	1.247	1.125	1.068
1.0	1.420	1.315	1.217	1.119	1.049
0.5	1.377	1.299	1.182	1.104	1.039
Average	1.466	1.350	1.232	1.112	1.059

These conclusions have been checked as follows. For each value of C_{1}, the best values of B_{1} and B_{2} of equation (21') were found by applying the method of least squares to the data in Table V. For a given value of C_{1}, we have the two equations

$$
\begin{align*}
& \Sigma C_{2} P_{\mathrm{HA}}=B_{1} \Sigma P_{\mathrm{HA}}^{2}+B_{\Sigma} \Sigma P_{\mathrm{HA}}^{3} \tag{2}\\
& \Sigma C_{2} P_{\mathrm{HA}}^{2}=B_{1} \Sigma P_{\mathrm{HA}}^{3}+B_{2} \Sigma P_{\mathrm{HA}}^{4} \tag{23'}
\end{align*}
$$

from which we determine the values of B_{1} and B_{2} as given in Table VII, which also contains the values of γ_{u} and γ_{a} calculated from B_{1} and B_{2}. We see that these values of γ_{u} and γ_{a} satisfy, roughly, the relation: $\gamma_{\mathrm{u}}^{2}=\gamma_{\mathrm{a}}$. Moreover these values of γ_{u} agree approximately with the corresponding ratios of Table VI which are more accurate values of γ_{u}. These latter values are given by the equation

$$
\begin{equation*}
\gamma_{u}=1+0.233 C_{1}=1+0.0777 S \tag{24}
\end{equation*}
$$

whence we find that approximately

$$
\begin{align*}
\log _{10} \gamma_{u} & =0.101 C_{1}-0.0118 C_{1}^{2} \tag{25}\\
& =0.0337 S-0.00131 S^{2}
\end{align*}
$$

and hence that

$$
\begin{equation*}
\frac{\log _{10} \gamma_{11}}{S}=0.0337-0.00131 S \tag{26}
\end{equation*}
$$

This result may be compared with equation (18). The stoichiometric activity coefficient of acetic acid, γ_{2}, satisfies the relation

$$
\begin{equation*}
C_{2} \gamma_{2}=C_{11} \gamma_{u} \tag{27}
\end{equation*}
$$

Hence the value of γ_{2} for solutions of acetic acid and sulfuric acid can be determined for any value of C_{2} from equation (24) and the value of K_{c}, which, according to Table VII, is approximately 0.185 liter/mole.

Table VII					
C_{1}	B_{1}	B_{2}	$B_{2} / 2 B_{1}^{2}=K_{\mathrm{c}}$	γ_{u}	γ_{a}
2.0	3.95	5.52	0.177	1.49	2.19
1.5	4.15	6.89	.200	1.41	1.74
1.0	4.64	8.08	.188	1.27	1.49
0.5	5.25	9.78	.178	1.12	1.23
.25	5.35	11.17	.195	1.10	1.08
.00	5.87	12.00	.174	1.00	1.00

Average . 185

Summary

1. We have measured the e. m. f. of cells of the type $\mathrm{H}_{2}, \mathrm{HA}, \mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{Hg}_{2} \mathrm{SO}_{4}, \mathrm{Hg}$ at 25°.
2. We find $E_{0}=0.6290$.
3. The e. m. f. over a considerable range can be represented by an equation of the Debye and Hückel type.
4. The activity coefficients of sulfuric acid have been determined from the e. m. f. data.
5. The vapor pressures of aqueous solutions of sulfuric acid and acetic acid have been determined by a dynamic method.
6. The data of Ramsay and Young on the vapor density of pure acetic acid have been employed to study the equilibrium between single and double molecules in the gas phase. The value of $K_{\mathrm{p}}=P_{\mathrm{HA}}^{2} / P_{\mathrm{H}_{2} \mathrm{~A} 2}$ found in this way is 0.325 mm . at 25°. This value of K_{p} was used in calculating the various partial vapor pressures.
7. From the observed values of the activity coefficient of sulfuric acid (derived from the e. m. f. data) and from the observed partial vapor pressures of water, the partial vapor pressures of acetic acid were calculated thermodynamically and compared with the observed values.
8. The equilibrium between single and double molecules of acetic acid in aqueous solution was investigated.
9. It was found that $K_{\mathrm{c}}=\frac{C_{\mathrm{a}} \gamma_{\mathrm{a}}}{C_{\mathrm{u}}^{2} \gamma_{\mathrm{u}}^{2}}=\frac{C_{\mathrm{a}}}{C_{\mathrm{u}}^{2}}=0.185 \frac{\text { liter }}{\mathrm{mole}}$.
10. It follows that $\gamma_{\mathrm{a}}=\gamma_{\mathrm{u}}^{2}$, independent of the concentration of sulfuric acid.
11. It was found that the activity coefficient of unassociated acetic acid, γ_{u}, is given by the equation (where $C_{1}=$ concentration of sulfuric acid), $\gamma_{\mathrm{u}}=1+0.233 C_{1}$.
12. This result is in approximate agreement with the equation of Debye and McAulay.

[^0]: (8) Hulett, Phys. Rev., 33, 259-263 (1911).
 (4) Harned. This Journal., 48, 327 (1926).

[^1]: (5) Randall and Cushman, This Journal, 40, 395 (1918).

[^2]: (8) Debye and McAulay, Physik. Z., 26, 22 (1925).
 (9) Randall and Failey, Chem. Rev., 4, 285 (1927).

